Congenital hip dysplasia: The importance of early screening and treatment

Francesco Marras,1 Chiara Asti,1 Corrado Ciatti,1 Stefano Pescia,1 Cristian Locci,2 Francesco Pisanu,1 Carlo Doria,1 Gianfilippo Caggiari1

1Orthopaedic Department, Sassari University Hospital; 2Pediatric Clinic Department of Medicine, Surgery and Pharmacy University of Sassari, Italy

Abstract

Congenital Hip Dysplasia (CHD) is characterized by a hip joint dislocation between the femoral head and the acetabulum, with a multifactorial etiology. This disorder can be an isolated condition or the manifestation of a syndromic condition, and it has been estimated with higher rates than registered, with a predominance in female sex and left side; risk factors are now defined. In Italy, the incidence rate is 3-4%, with significant regional differences: higher in Lombardy and lower in Sicily. Because clinical examination alone is insufficient to diagnose CHD, it is supplemented with ultrasonography and X-ray if necessary. Surveillance, static or dynamic splints, or osteotomies are the only treatment options. The goal of this study was to evaluate our experience in terms of management and conservative treatment of all newborns from January 2018 to May 2022: female sex and left hip were major involved, risk factors were not significant in our case, but results from early diagnosis and treatments, in terms of better outcome, were interesting. After a strict 6-month follow-up period, 89.13% of the patients were classified as grade Ia or Ib according to the Graf classification system. Finally, we emphasize the importance of early universal screening and subsequent diagnosis to allow for early treatment of the disorder, at an age when conservative treatments can yield good results.

Introduction

Congenital Hip Dysplasia is a developmental disorder defined by anatomical aberrations that involved building structures of the hip joint, such as abnormal acetabular cartilage and subsequent laxity of the capsule. It prejudices the fit of femoral head in hip joint, leading to different functional disorders depending on anatomic aspects: from mild laxity to complete dislocation of the joint, avascular necrosis of femoral head, early osteoarthritis, secondary femur damage and movement problems if not early treated. Complications are typically characterized by the need of performing a total hip arthroplasty in young adults.1

In literature is also used the Anglo-Saxon term “Development Dysplasia of the Hip (DDH)”, focused on its evolutionary potential during lifetime and the related pathologic features; we prefer referring to the aforementioned disorder using “Congenital Hip Dysplasia (CHD)” in accordance with Italian Pediatric Association of Orthopedics and Traumatology (SITOP) to better convey its association with genetic/epigenetic aspects and its natural history as a dynamic condition which may deteriorate or improve lifetime.2

CHD can be an isolated condition or associated with genetic neuromuscular disorders as a syndromic condition, such as arthrogyrosis, myelomeningocele, Ehlers-Danlos and Larsen’s syndrome. In these cases, clinical features are evident and help us in diagnosis. Recent association studies in literature tend to consider CHD as a multifactorial disease including genetic, epigenetic and environmental risk factors at the base. Genetic factors are multiple pathway-related genes; as epigenetic factors we can mention DNA methylation, histone modification and non-coding RNA-associat-
ed gene silencing that are involved in variation of specific gene expression for building joint’s structures. Unfortu-
nately, our knowledge is lacking, the exact etiology is still unclear and debated.

Risk factors include female sex, a positive family history (especially first-related relatives), breech presentation, premature-
gestation, multiple pregnancy, high weight at birth, club-
foot disorders, oligohydramnios, fetal malposition, presence of dif-
ferent malformations and limited hips abduction. The last 3 men-
tioned can lead to “packaging problems” creating a constrictive
intra-uterine environment, subsequent malposition and maldevel-
opment of the hips. CHD is one of the most frequent skeletal
anomalies and world-wide spread but with different prevalence:
high in Asia and Europe, especially Mongolian, Mediterranean
and North-European population; low in Sud-Africa and Sub-Saharan
area; decreasing in Japan. Many Authors sustain a connection
between infants swaddling and DDH, where legs are extended, and
hips are in extension and adduction position. In Italy the average
incidence is 3-4%, with higher rates in Emilia Romagna (5%), Val
d’Aosta, Marche, Basilicata (4%), and Lombardy, where it can
reach the 15-20% of the population, contrariwise lower rates are
registered in Sicily (2.5%). Real rates are estimated to be higher
than registered reports, depending on the effectiveness of early
screening and diagnosis. CHD may be one of the major causes for
a Total Hip Arthroplasty (THA) in young adults as R.I.P.O. shows:
its stands at 9%, after primary coxarthrosis (69.4%) and fractures of
femoral neck (9.2%). Dysplastic hip(s) may be observed within
clinical examination in the presence of following features: lower-
limb length discrepancy, asymmetric thigh or gluteal folds, painful
or, on the other hand, asymptomatic motion; limited motion and
asymmetric abduction are assessed by specific tests, the most per-
manent and training have an important impact on positive predictive val-
ues; they still can identify CHD in 54% of cases.

Gold standard for diagnosis is the ultrasonography, which
allows the visualization of femoral head position and the anatomic
relation between femoral head and acetabulum, specific para-
ters such as acetabular depth and inclination, static or dynamic
evaluation. After 4-6 months of age, the femoral head ossification
nucleus is radiographically visible, and it can be performed to
manage severe CHD or to prove the effectiveness of the adopted
treatment; fundamental radiograph signs are: Perkins line and arc
of Shenton. CHD can be treated in different modalities, depend-
ning on the severity of the dislocation. Current guidelines suggest
for a early diagnosis and treatment if necessary, based on the
knowledge that after six months resolution is very unlikely. Early
management can be either represent by strict surveillance, includ-
ing clinical examination and ultrasonography or static/dynamic
harnesses to be worn most of the time. Static splints are less used
nowadays because they promote a “rigid reduction” and seem to
have a higher rate of complications, first of all avascular necrosis
of the femoral head. The most accepted indication is in unstable
hip that need to be centered. On the other side dynamic splints pro-
mote a “dynamic reduction” of the hip, leaving the child free to
move within a permitted range and maintaining the hip in flexion
and abduction; they are valid therapeutic options for CHD, espe-
cially if applied early (within 6 months). Besides less complica-
tions are recorded in systematic reviews published in literature. For severe and/or irreducible hip dislocation the only valid options
are reduction undergo general anesthesia and/or surgical treatment,
We performed a clinical and radiological follow-up, using ultrasonography and pelvic radiography; X-rays became necessary in 16 cases (23.19%) of mild-severe CHD (Graf grade > IIb) and it was performed when babies started to walk by themselves.

Non-surgical treatments or observational follow-up were applied to all 46th patients (Table 2), following actual acknowledged guidelines.

In conclusion, 3 newborns did not complete all their care pathway, 2 newborns needed to use dynamic splint, 2 infants had irreducible dysplasia and they were directed towards Specialized Hospitals for performing pelvic osteotomy.

Outcomes of our management were judged as successful (41 out of 46 cases, 89.13%) when hip achieved concentric and stable reduction classified as Ia or Ib Graf grade, with or without using abduction dynamic splints (Tubingen, Ferrara, Pavlik).

Table 1. Graf grades are schematically described in this Table; this classification system based on ultrasound evaluation of specific landmarks (angle α and angle β), permits to classify newborns’ hip(s) in term of maturity and stability. Data taken from Jacobino et al.14

<table>
<thead>
<tr>
<th>Graf Grade</th>
<th>Description</th>
<th>Angle α</th>
<th>Angle β</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Mature hip</td>
<td>$> 60^\circ$</td>
<td>Ia \rightarrow $\beta \leq 55^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ib \rightarrow $\beta > 55^\circ$</td>
</tr>
<tr>
<td>II</td>
<td>Immature hip</td>
<td>50°-59°</td>
<td>$>55^\circ$</td>
</tr>
<tr>
<td></td>
<td>IIa+ \rightarrow 0-12 weeks, adequate bony roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIa \rightarrow 6-12 weeks, deficient bony roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIb \rightarrow over 12 weeks, deficient bony roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Critical hip</td>
<td>43°-49°</td>
<td>$\leq 77^\circ$</td>
</tr>
<tr>
<td></td>
<td>IIe at any age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Decentring hip</td>
<td>43°-49°</td>
<td>$> 77^\circ$</td>
</tr>
<tr>
<td></td>
<td>IIId at any age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Dislocated hip, based on cartilage roof.</td>
<td>$< 43^\circ$</td>
<td>$> 77^\circ$</td>
</tr>
<tr>
<td></td>
<td>IIIa \rightarrow normal echogenicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIb \rightarrow hyperechoic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The figure represents the gender distribution that we registered in our study; 37 female (80.43%) and 9 males (19.57%), with a female-male ratio quoted as 4:1 approximately.

Figure 2. In our data, we collected 23 patients affected by single-side hip dysplasia (50%) and 23 patients with bilateral hip dysplasia (50%); we managed and treated a total of 69 dysplastic hips. Of these, left side was involved in 38 cases (55.1%) and right side in 31 cases (44.9%); it is showed in the second half of the graph.
Table 2. Report of conservative treatment applied to patients in our study, a total of 46 children with CHD diagnosis: 40 cases were treated with dynamic splints (Ferrara, Pavllick, Tubingen), 1 patient worn a specific panty and 5 newborns underwent to close observational follow-up only.

<table>
<thead>
<tr>
<th>FERRARA</th>
<th>PAVLICK</th>
<th>TUBINGEN</th>
<th>PANTY</th>
<th>FOLLOW-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>8</td>
<td>14</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(39.13%)</td>
<td>(17.39%)</td>
<td>(30.43%)</td>
<td>(2.17%)</td>
<td>(10.87%)</td>
</tr>
</tbody>
</table>

The correspondent percentages are reported in brackets.

Discussion

We showed our results, in connection with data that we can find in literature: there were mostly affected female sex and left hips; moreover, in bilateral CHD, left side was the worst one in terms of Graf grade.1-13

Clinical examination itself was not decisive in the majority of cases, instead ultrasonography was the gold standard. Hip ultrasonography can identify the presence of hip dislocation and other anatomical markers, leading us to classify each patient in different range of severity, as Graf defined through the measurement of angle between landmarks, alpha and beta; in our study case the most frequent type of CHD was IIA+. We confirmed the importance to extend this investigation in suspicious CHD or as early screening test.14 We firmly sustain the basic role of ultrasound exam, and it was demonstrated by the analysis of risk factors: we registered breech presentations at delivery and positive family history in our data set, but the percentage values were not significant. For this reason, we cannot agree with Authors who regard universal ultrasound screening unnecessary and dispensable.15 Otherwise, we considered a proper point of view the position of SITOP, proposing universal ultrasound screening instead of selective ones.16,17

The importance of an early screening and subsequent diagnosis of CHD is also remarkable by outcomes: we observed consistent improvements of the abnormal condition with resolution of the disorder in most of cases; our study included newborns who underwent prior examination less than 3 months age. In only 2 patients there was the necessity to lead them to Specialized Hospital for concluding the health treatment.

Thus, we can treat and manage patients in a conservative way without applying surgical approaches which are still unavoidable in severe CHD and DDH.18,19

We preferred dynamic splints in presence of pertinent indications and whenever the conditions of hip dislocation permitted to handle it in that way; we obtained short results withth following up surveillance, as we could reach from upper grades to Ia or Ib as a final evaluation.20 The surveillance by itself was not effective, indeed 2 patients were subsequently treated with dynamic splints.

We are aware about the fact that our casuistry is not statistically significant, but it has been useful to evaluate our management and consequent results: we are satisfied for our success in terms of patients’ clinical and radiological improvements.

Conclusions

Indeed, we would like to remark the importance of universal screening, early diagnosis and treatment in terms of obtaining better outcomes within the first months after birth, which can be resolutive for congenital hip dysplasia.21

Our suggestion for the future is create a mid-long term register of patients to record any pertinent and clinical changes regarding this pathology that remains unclear and an interesting disorder for literature studies, where distinguished Authors debate on its management and treatment.

References

8. Ortolani M. Un segno poco noto e la sua importanza per la diagnosi precoce di pre lussazione congenita dell’anca. La Pediatria 1937;45:129-36.